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A first-order invariant Einstein—Cartan structure is a Lagrangian structure
on a differential manifold defined by a generally invariant Lagrangian
depending on a metric field, a connection field, and the first derivatives of
these fields. Moreover, it is assumed that the metric and connection fields
satisfy the so-called compatibility condition. In this paper the problem of
finding all such invariant Einstein—Cartan structures is discussed. It is shown
that each Lagrangian of these structures depends only on certain tensors
constructed from the metric and the connection fields, which means that all
the Lagrangians can be described within the framework of the classical theory
of invariants. The maximal number of functionally independent Lagrangians
is determined as a function of the dimension of the underlying manifold.

1. INTRODUCTION

A first-order invariant Einstein—Cartan structure is a Lagrangian struc-
ture (Trautman, 1972; Krupka and Trautman, 1974) defined by the generally
invariant Lagrangian depending on a metric field, a connection field, and the
first derivatives of these fields. Examples of these structures are well known
from various considerations concerning the internal spin of matter as the
source of the gravitational field (Trautman, 1976; Kopczynski, 1975) and
from the literature on the variational principles of the general relativity theory
(Rund and Lovelock, 1972; Rund, 1967).

Krupka and Trautman (Krupka and Trautman, 1974; Krupka, 1974)
have shown that every rth-order invariant Lagrangian structure is uniquely
determined by an L, ™-invariant Lagrangian defined on a differential manifold
endowed with an action of the differential group L,". It has also become clear
that all such invariant Lagrangians are, at least in theory, computable
(Krupka, 1976; Krupka, to appear; Novotny, to appear). In this paper we
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apply the same method to the problem of classifying the first-order invariant
Einstein-Cartan structures.

Each first-order Lagrangian depending on a metric and a connection field
is defined on an open subset of the manifold 7,* Q of one-jets with source at
the origin 0 of the n-dimensional real Euclidean space R™ and target in the
manifold @ = (R™ © R™) x R™, where R* O R™ denotes the space of
second-order, symmetric covariant tensors on R" and the factor R" cor-
responds to the elements of the connection. The Lie group L,® of all invertible
three-jets with source and target at 0 € R* acts on the manifold 7,'Q in a
well-known manner. More detailed general information on this action and
the theory of jets can be found in (Krupka, 1974 and Ehresmann, 1953). The
corresponding L 2-invariant functions are in fact identical to the Lagrangians
of the considered Lagrangian structures.

The second section of this paper is devoted to the definition of suitable
local coordinates on the manifold 7,'Q and to a coordinate description of
the action of the group L,® on T,'Q.

In the third section we consider the Lie algebra 1,3(T,* Q) of fundamental
vector fields on 7' Q defined by the group L. We find a system of vector fields
generating the Lie algebra [,3(T,! Q) and characterize the rank of ,3(7;' Q) at
its maximal points. The rank of a Lie algebra of fundamental vector fields is
the important characteristic that determines the maximal number of function-
ally independent integral functions of this algebra (Hermann, 1968). We reach
the conclusion that the problem of finding all L,3-invariant functions on 7;' Q
can be reduced to the problem of finding all GL,-invariant functions depending
on some tensors, i.e., to the problem of the classical theory of GL,-invariants.
This problem can be solved with the help of the algebraic theory of invariants
(Gurevig, 1948; Dieudonné and Carrell, 1971). The second result obtained
is the maximal number of functionally independent first-order invariant
Lagrangians depending on a metric and a connection.

In the fourth section, these results are applied to the first-order invariant
Einstein—Cartan structures. In particular, the maximal number of functionally
independent Lagrangians of these structures on n-dimensional manifolds is
determined which is equal to 0, 9, 57, 194 for n = 1, 2, 3, 4, respectively.

The last section is devoted to the study of some special classes of the
first-order invariant Lagrangians depending on a metric and a connection.
In a special case of Lagrangians, our results are in agreement with those of
Rund (1967).

2. FUNDAMENTAL GEOMETRICAL STRUCTURES

Let us consider the manifolds Q and T,,'Q introduced in the first section
and define in terms of some coordinates the standard action of the group L,?
on the manifold 7,,' Q [for the generalities, see (Krupka, 1974)].
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Let g;;, I';. be the canonical coordinates on Q, and let g, I, gij. 1, Thies
be the associated canonical coordinates on the manifold T,* Q. In accordance
with the general theory, each first-order generally invariant Lagrangian
depending on a metric field and a connection field is a function of the variables
8i5s Thi> 8is Dot

Denote by a/, ai;, aiy; the canonical coordinates on L,%. The group L,?
acts on the manifold Q by

& = b"b;"gmn 2.1
F%cl = F;{lpamibknblp — by/bjajs
where b,7 is defined by a/b,/ = 8} and 8, is the Kronecker symbol. The
group action of L,® on T,'Q, associated with this action, is given by (2.1)
and by
& = bbb mn,p — "B b DM (A8 cgmn + A§nZom)
Ti, = I7, 0, boby"bP + Tah b by "b? (2.2)
~ Than'bfala(biPby b + by?bi"b,")
+ bbb by (aayy + abeahs) — b'bi’blag e

As usual, if a system of numbers g;;, 'y, gij.x, L'y, denotes the coordinates
of a point jif e .} Q and if a}, ai;, ai; are the coordinates of an element
jolee L2, then g, T4, 8., T, is the system of the coordinates of the
transformed point jya-joif € T,1 0.

Let us consider a subset W < T,'Q formed by the points, where
det (g;;) # 0, and let us introduce the functions g on W by the relation
g¥g5. = §;. On Wanew coordinate system can be introduced by the relations

gii — gi:i
Wi = g7 = g7, + Thyg™ + Thiug™
Jk = P_’/k - FkJ

S =Th + Ty

Rlyy = Ths — Th, + T4TY, — D4T, @3
Vi = Theo = They — Thyi + (T — T5)T
~ (T — ’s)I’?i — ([} — T

U!ljk = (FU P I‘zk it Fu Py Fﬂcz + Ffm i ;cj,i)
It can easily be shown that the inverse transformation is

g1 = gt

ng = %(T}k + S:k)

.= WH — 1g™(Ti, + Si,) — +g™(Ti, + Si,.
gk 38 (Thy i) — 28 (Thy ) (2.4)

F§k,i = U'.Jk -+ 3(lek1 + Vik;) + G(Ruk + R;'ik -+ 3R§cw)
12(2T]l's ik = TilsTfk - 3T Stls + 3T]ls isk
—3TESY — 28155 + SLSh + SESE)
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and that the following identities hold.
R?Icl + -R;'ilc + Rﬁli = I/i’I';:l + I/l'illc + Vlg'li - ﬂkﬂ'; - E{Tl}clj - T; I€1T1’IL

In these coordinates, the action (2.1), (2.2) of L,® on T,*Q is expressed by

g = a,ia,g™

WY = a,la,’b W

T = a,'b"b,"TT,

—j'k = a,'b;"b,*ST, — 2bb,’dy,
Rj = an'bi"bi”b " Ripg 2.5)
7§k1 = ay'b"bi?b "V g

Uiy = Han'bh"bPUls + 2b7b b, P (Shyahs + Sisaby + Siaain)

— 4byPby,"b b a, (Sipass + Snualy + Sheaps)

+ 4b/b b by (abaly + absass + aheats) — 6b,b b ag,)

These are the desired formulas.

3. INVARIANT LAGRANGIANS

Let G be a Lie group and M a differential manifold; let the map
G x M5 (g, x)—g-xe M define an action of G on M. Recall that a real
function f defined on M is said to be G-invariant (or just invariant) if
flg-x) = f(x)forall xe M and g G.

Our problem is to characterize all L,*-invariant functions defined on the
manifold T,' Q. The general theory tells us that each L,%-invariant function f
satisfies the complete system of differential identities

BE(f)=0, EHXf)=0  EH=0 3.1

where £/, £, E{*' are the fundamental vector fields on T,,'Q, defined by the
action (2.5) of the group L,® on T, Q. Equations (3.1) form a system of linear,
homogeneous, first-order partial differential equations for the function f.
The classical Frobenius theorem (Hermann, 1968) ensures the existence of
the nontrivial solutions of (3.1) and enables us to determine the maximal
number of functionally independent solutions.

Let us construct the vector fields =/, Eff, E{* (3.1). By a standard
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differentiation procedure we easily obtain from (2.5) that in the local co-
ordinates g¥, Wi, T%,, St., Ry, Vin Uln on W, it holds

— 2 0 2
L"aﬂ = 2g ,\gw + 2Wk 8W"” - W“ZJ aW”v + Tjk aT“
2 7 17 2
- 2Tt£zk a—fg‘k + R?kl aRja Rakl aRi 2R1al aRi 51
0 0 0
B _ 1 — i —
+ 1V/jlcl ana;cl 2Vazkl 8Viﬁkl ija aV;kB (3’2)
=8y — 0
< = 75,
" Byo _i_
< = 305,

These vector fields obviously span the Lie algebra ,3(T,,'Q) on W.

We can now determine the rank of [3(T,'Q) at its maximal points,
i.e., at points of the manifold 7, @ where the number of linearly independent
fundamental vector fields is maximal. To do this, we define new local co-
ordinates R;;, on W by the relation

Rijii = gimRjia
and put
= gBVEaB
(Eey + By, Er = 3Eu — )
The system (3.2) of fundamental vector fields on W is thus equivalent to the
system

wa +
o

~
W=

— a j f a
Bh = g + MW+ WIS — g WY~ 8aWY) g

o
+ 3(8Theds' + 83T hdy — 28Tt — 285.T%0) P
oY,

— 38y Rujis + &iaRyjns + & Ricks + LiaRivis
0
+ 285y Rijia + 2850 Risier) 35— EY: 3

+ 38 Viksds' + 81aVisdy' — 281 Viee — 2850V s

0
~ 8y Vika — gﬁaV}ky)a_V_};; (3.3)
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—_ . . . 0
Sy = %(ngrwlgjsdi - 2gkaW§7871 - glivW«izj + 8pa W;J) a_VVg
. ; )
+ 3gnThds' — 85T hid)' — 285, Thic + 285.T) 5

— 3(giRajks — GiaRysks + &1y Riaip — LiaRipes
0
+ 285, Rijie — 2852 Rijiy) 6_&;;

+ 28 Vs — 81aVired' — 281yVins + 285V ks

: , d
— 8y Vika + &saViky) i 3.3
kB
mey = O
@ 0S%,
HBvé — 9
“ oU%,s

The rank of this system is defined as the rank of the matrix formed by the
coefficients in (3.3) at the base vector fields

0 0 0 0 0 i 0
og'” oW 0Ty ORyw Vi)' 0Sh Ul
The form of the vector fields (3.3) shows that the rank of this matrix at its
maximal points is given by

n+2)

rn=r;,+%n(n+1)+%n2(n+l)+n( 3

where r;, is the rank of the matrix

Eay E
l a<vy A, E
!
0 i<
Ry '~
—_—

Similarly as in (Krupka, 1976) one can show that the determinant det (A,) # 0
and thus at some point of 7,'Q, r,’ = (1)-n(n — 1). The rank of the system
(3.3) or (3.2) of fundamental vector fields, i.e., the rank of the Lie algebra
L3(T,* Q) at its maximal points, is thus equal to

r, = n%(m* + 6n + 11)
According to the general theory of vector field systems (Hermann, 1968), the
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basis of integral functions of the Lie algebra /,3(T,' Q) includes exactly

M,=dimT, 0 — r, = 4n(5n® + 3n% — 5n + 3)
functions.
Our results can be summarized as follows.

Theorem. Each generally invariant Lagrangian L depending on a
metric field, a connection field, and the first derivatives of these fields
satisfies the complete system of differential identities

AL =0, B8(L) =0, 8Ly =0 3.4
where B,°, Bf7, B8 are given by (3.2). There exist at most
M, = in(5n® + 3n® — 5n + 3)
functionally independent generally invariant Lagrangians.

Note that the form of the vector fields (3.2) implies that each Lagrangian
of the considered class depends only on the coordinates g, W¥, T%,, Ry, Vi,
These coordinates transform, under the transformations from L,® as tensors
of GL,, by (2.5). We can therefore conclude that the problem of finding all
L, 2-invariant Lagrangians on W < T,1Q is reduced to a problem of finding
all invariants of the tensors g, W¥, T%,, Rl Vi, i.e., to a problem of the
classical invariant theory (Gurevi¢, 1948 ; Dieudonné and Carrell, 1971).

4. EINSTEIN-CARTAN STRUCTURES

Let us discuss the possible invariant Lagrangians for the Einstein—Cartan
theories of gravitation. The underlying structure for these theories is a four-
dimensional differential manifold with a metric tensor field and a linear
connection compatible with the metric. The connection is not symmetric, in
general. Recall that a linear connection with the components I'}, is said to be
compatible with the metric with the components g;; if

8ije = ire — Lin&ss — U5r&is = 0 4.1

i.e., if the covariant derivative of g;; by I}, vanishes.

From the point of view of the variational theory the condition (4.1)
means that a first-order Lagrangian defining an Einstein-Cartan structure is
independent of the coordinates g;; . or, in our coordinates (2.3), (2.4), inde-
pendent of W¥. Each such generally invariant Lagrangian is thus defined on
a subset of the manifold P = (R™ O R™) x T,'R*®, where T,'R™ is the
manifold of one-jets with source at 0 € R and target in R". The natural
action of L,® on P is immediately seen from (2.5).

The fundamental vector fields on P generated by this action can be
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obtained easily. In terms of the coordinates g¥, T%,, Sk, R, Vi, U, onP
these vector fields are given by

L, o /] 0 0
=8 — g8 _Y 8 9 _ ogu g _ 9 _ p 9
“ g og* + T T4, T oT, fm + R OR Re ORG
0 0 . i} 0
— Rt I g 9 _opn 9 g 9
Ry T Vg, ~ Ve gy, T Ve,
“4.2)
FY — ___3
A YA
move 0 "
L= = @
Byé

The rank of the Lie algebra ,3P is given by
r, = in?(m?® + 6n + 11)
This can be checked in the same way as in the preceding case.
We have thus arrived at the following conclusions.
Theorem. Each generally invariant Lagrangian defining an Einstein—
Cartan structure satisfies the complete system of differential identities
(3.4), where 5,2, £, 587 are given by (4.2). There exist at most
M,=dmP — r, = tn(50® — 8n + 3)
functionally independent generally invariant Lagrangians.

In particular, each first-order L,%-invariant Lagrangian of an Einstein—
Cartan structure depends only on the metric tensor, the curvature and torsion
tensor, and the covariant derivative of the torsion tensor.

Consider for example the case n = 2. Then M,, = 9 and it should not be
so difficult to obtain a basis of L,%-invariant functions without a computer.
In fact, it is directly proved that a basis of the corresponding generally
invariant Lagrangians can be taken as

L, = g"Ryf;,;

Ly, = g”ng?miR?nj
La = gijgklR?miR?nl
L, = g7¢"VRu R
Ly = g"Viy

Ly = g'g" ViV
Ly = g7g" ViV,
Ly = g7g" RV fin
Ly = g"THTY;
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5. SPECIAL CLASSES OF LAGRANGIANS

In this section we discuss some special classes of the first-order generally
invariant Lagrangians depending on a metric field and a connection field.

(@) L(gi T, T4, D, Th = T'%,. Putting T%, = 0 and V¥, = 0 we obtain
from (4.2) that the corresponding fundamental vector fields are of the form

- %, 17} o 0
*:'aﬂ = ZgiBEgTz + ngl aRrx Rakt aRj 2R1al aR;m
0
=Y —
=% = 5oz 5.0
FAYS _2__
¢ aUgyé

The rank of the Lie algebra L3[(R™ O R™) x R"], m = (})-n¥(n + 1), is
given by

r, = In?(m® + 6n + 11)
and there exist at most

M, = in(2n® — 51 + 3)

functionally independent Lagrangians.

We note that this class of Lagrangians was investigated by Rund. It can
be seen by a direct calculation in the canonical coordinates that our funda-
mental vector-field system (5.1) is equivalent to his first, second, and third
invariance identities (Rund, 1967).

(b) L(gis Iy, I, where T, is a metric connection. Consider the case
of the metric connection. Then

The = 38"™(@msc + Zmk,s — &iem) (5.2)

and T, ; is expressed by means of the coordinates gi;, gk, &is,.- This means
that the corresponding generally invariant Lagrangians are defined on the
manifold T,%(R™ O R™) of two-jets with source at 0 e R* and target in
R™ O R™. In 23)put Wi =0, Th, = 0, Vi, = 0 and introduce new local
coordinates R, Usj, Digx bY

— m
Rija = &imRii

— m
Ui = 8nUTa

— 1 m
Aijk = $8imSh

On comparing these coordinates with those on T,2(R* © R™) introduced by
Krupka (to appear), we can conclude that the converse is also true: Each
second-order generally invariant Lagrangian L(gi, g i) defines a



582 Horgdk and Krupka

generally invariant Lagrangian L(g;;, I, I, ), where (5.2) holds. The
generally invariant Lagrangians L(gi;, 8> 8i;.,1) have been characterized by
Krupka (to appear; 1976).

(©) L(gi, &is.x> ). The Lagrangians of this type are defined on the
manifold T,*(R™ © R™) x R*. Each of these Lagrangians satisfies the
system of differential identities

E’aﬂ(L) =0, Eg‘y(L) =0 (53)
where
0 0 2 /] 0
T8 — 98 Y 8 1 8 i
Sy 2g agi‘" + 2Wk aW‘H Wo: 3W” + Tjk 6T°’ 2Tak ank (5 4)
—
0Sgy

and the local coordinates g, W¥, T%,, S}, are defined by the first four relations
of (2.3).
To determine the rank of this system, we introduce new local coordinates

Qi = EmEmWiE™
and put

[I]

Soy = Zpya

;y = %(an + Ew)a E‘ar %.(‘—'av — & a)

[1]

[ E

As before, the rank of the vector-field system Ef,, By, B£7 is given by
rn=1n+ 30(m + 1) + 40%(n + 1)

where ry, is the rank of the matrix

—_ !
l Say H
a <y A, |
]
9 i<j
aQijn,
_—

Since det A, does not vanish identically, we have at somepointsr;, = Dn(n — 1).
Consequently, there exist at most

M, =3in(2n? - n + 1)

functionally independent generally invariant Lagrangians of the considered
class.
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In the case of the symmetric connection, T%, = 0 and the system (5.4) is
reduced to

) 2 o
"B = i8 87 . — 17
B = 28" gom + W gy — Wi
zor o O
“ = s,

The rank of this system remains unchanged and the maximal number of
functionally independent invariants is given by

M, =3n(n*>+ 1)

(d) L(gi,, T'i). The Lagrangians of this class are defined on the manifold
(R™ © R™) x R™. Bach of these Lagrangians satisfies (5.3), where

. 0 0 0
=B — i _— 8 _Z . {
g Zg agia + Tfk: aT?k 2Ttxk 3T§;c (5 5)
T8Y - 0
¢ o8g,

and the local coordinates g¥, T}, Sk, are defined by the first, third, and fourth
formulas of (2.3).

To show the independence of this system of differential operators, we
introduce the local coordinates

Pije = gimT T
and proceed in the same way as in the preceding case. Since the rank of the

system (5.5) is equal to
rn = 3n%(n + 3)

we can assert that there exist at most
M, = %n(n - 1)2

functionally independent generally invariant Lagrangians of the considered
class.
In the case of the symmetric connection the system (5.5) is reduced to

—_ 7]
:‘aB = thB agio:
BHEY = 9

“ oS§,

Putting
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we see that there exist no nontrivial Lagrangians depending on g;; and
symmetric connection I'},. This result agrees with (Rund, 1967).
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